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 The Unit of Analysis: Group Means Versus
 Individual Observations

 KENNETH D. HOPKINS

 University of Colorado

 This paper shows that the common recommendation to use group
 means when there may be nonindependence among observational units
 is unnecessary, unduly restrictive, impoverishes the analysis, and limits
 the questions that can be addressed in a study. When random factors
 are properly identified and included in the analysis, the results (Fs and

 critical Fs) are identical in balanced ANOVA designs, irrespective of
 whether group means or individual observations are employed. The use
 of individual observations also allows the exploration of other inter-
 esting questions pertaining to interaction and generalizability. In ad-
 dition, the pooling strategy can be considered. Thus, the question of
 the proper experimental unit or unit of analysis for treatment effects is

 answered directly, correctly, and implicitly when the proper statistical
 model is employed.

 INTRODUCTION

 As early as 1940, Lindquist recognized a problem that characterizes many
 educational and behavioral experiments-the use of individuals as the
 statistical unit of analysis when the treatment is applied to a class or to a
 group. When the treatment is not administered individually to each subject,
 the statistical assumption of "independence of error" can be violated if
 individual scores (rather than class means) are used as the unit of analysis.

 BACKGROUND

 In his review of Lindquist's (1940) classic test Statistical Analysis in
 Educational Research, McNemar (1940) observed:

 The author is indebted to Gene V Glass, Rick Kroc, Lynn Sherretz, and an AERJ reviewer
 for their helpful suggestions on earlier versions of this paper.
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 KENNETH D. HOPKINS

 We next raise a puzzling question for which we have no definite
 answer.... [T]he analysis of variance technique is applied to an educa-
 tional-methods experiment involving five schools and three methods, with
 twenty pupils in each of fifteen classes. The analysis is carried through on
 the basis of the fifteen class means in such a way that neither the number
 of pupils nor the pupil variation enters into the analysis .... The reviewer
 suspects that something is wrong with a test of significance that does not
 involve the variation of the individuals upon which the means are based.
 We are unable to locate the fallacy here, if there be such .... We are not
 arguing that the author is wrong in arguing that intact groups are the proper
 sampling units, but rather that the case is not convincingly stated.1 (p. 747)

 The confusion expressed by McNemar is still evident, although several
 efforts have shed light on the relevant issues (Addelman, 1970; Barcikowski,
 1980; Burstein, undated; Campbell & Stanley, 1963; Fletcher, 1968; Glass
 & Stanley, 1970, pp. 501-508; Kempthorne, 1952, p. 163; Lindquist, 1953;
 Lumsdaine, 1963; Page, 1965; Peckham, Glass, & Hopkins, 1969; Raths,
 1967; Steck, 1966; Wright, 1969). Cronbach (1976, p. 5.22) has stated,
 "Significance tests based on individual-level analysis are unacceptable when
 classes are the unit of sampling."

 Glass and Stanley (1970), Page (1975), and others have noted that the
 independence assumption can be violated when the subjects receive the
 treatment as a group even if individuals are randomly assigned to groups.
 In such situations, the type 1 error probability statements can be seriously
 underestimated. Glass and Stanley (1970) stated:

 Educational researchers are especially prone to making the error of analyz-
 ing data in terms of units other than the legitimate unit.... The researcher
 has two alternatives, though he is seldomly aware of the second one: (1) he
 can run a potentially illegitimate analysis of the experiment by using the
 'pupil' as the unit of statistical analysis, or (2) he can run a legitimate
 analysis on the means of the classrooms, in which case he is almost certain
 to obtain statistically nonsignificant results. (p. 507)

 For purposes of this paper, certain facets of the illustrative studies that are not
 relevant to the points being made were ignored, such as the elimination of factors
 that would make the examples unnecessarily complex. The elimination of these
 distractions has no effect on the F ratios or conclusions of the studies. The conclusion

 of the studies, and their internal validity, are irrelevant to the purpose of this paper.
 Be studies weak or strong, the common effects evaluated when group means and
 individual scores are used as the unit of analysis will be associated with identical
 observed and critical Fs with balanced designs. With unbalanced designs the results
 will not be identical, but will differ depending on the extent to which the sources
 of variation in the design are nonorthogonal, and the particular analysis strategy
 employed (e.g., unweighted means, hierarchical, "classical" fitting constants or
 "saturated" regression solution).
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 UNIT OF ANALYSIS

 Page (1975) observed:

 Classrooms are potentially very rich in research variables: variables of
 student, teacher, curriculum, environment, variables measured and yet
 unmeasured, conjectured or yet unimagined. And the interactions of such
 variables are, theoretically at least, many times more numerous. Yet most
 researchers have little understanding of how classrooms may be analyzed.
 Many treat each student as an independent subject, but in doing so produce
 findings which are not replicable by others. More rigorous investigators are
 apt to suppress most of the richness within the classroom by using class
 means. Is there a way to overcome this dilemma, to have both rigor and
 richness? (p. 339)

 Page pointed out that the use of class means (as the observational unit)
 makes it impossible to evaluate, statistically, interaction hypotheses between
 treatments and learner characteristics (e.g., ability, sex, ethnicity). These
 interactions speak directly to important questions regarding external validity.

 Researchers have failed to recognize that if the proper ANOVA model
 is explicated and employed, the "problem" of the appropriate unit of analysis
 disappears. Furthermore, it will be shown that the use of class means does
 not necessarily ensure that the relevant independence assumption has been
 met. The author did not locate any study in which the question of the proper
 unit of analysis and the related independence assumptions were evaluated in
 the context of the available alternative statistical models. Several different

 statistical models will be compared in this paper, along with an illustration
 in which the same data are used. Initially, three models will be compared
 using data from a study (DeRosia, 1980) in which two methods of instruction
 are contrasted, with three teachers nested within each method; twenty-five
 students are nested within each teacher.

 Model A

 The single-factor fixed effects general linear model for the score for the
 ith student (i = 1, ... n) nested (":") in the mth (m = 1, ..., M) method
 group is

 Xim = i + (Xm + Ei:m (A)

 The assumptions of normality, homogeneity of variance, and independence
 pertain to the E values, viz: Ei:m ~ NID (0, a,2) (i.e., within each of the M
 methods, the E values are normally and independently distributed and have
 a mean of 0, and common variance, o2). The expected mean squares, E(MS),
 for Model A are given in panel a of Table I; the right-hand portion of panel
 a gives the results of the analysis of the DeRosia data using Model A.
 Analyses such as this that use scores from individual students have been
 widely criticized since Lindquist (1940). For example, Kempthorne (1961)
 observed:

 7
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 TABLE I

 Expected Mean Squaresfor a Balanced ANO VA Design (and Illustrative Analyses) in which n
 Students are Nested within T Teachers, which are Nested Within M Methods, using Three

 Models

 Example
 SV v E(MS)

 v MS F

 a) [Model A: Xim = ,l + am + Ei:m]
 Methods (M) ................. M-l a:m + n ao 1 2814.6 7.69*
 Students nested within

 method (S:M) ............. M (n - 1) am 148 366.2

 b) [Model B: Xtm = I1 + am + lt:m]
 Methods (M) ................ M-1 o0m + To a 1 112.6 1.99
 Teachers nested within

 methods (T:M) ............ M(T- 1) at2m 4 56.5

 c) [Model C: X,tm = + am + m + : + ei:tm]

 Methods (M) .... ..... M-1 o2tm + noT + nToa 1 2814.5 1.99
 Teachers nested within

 methods (T:M) ............. M(T-) atm + natm 4 1412.7 4.19*
 Students nested within teachers

 and methods (S:TM) ........ MT(n - 1) aotm 144 337.1

 *p< .01.

 If all experimental units receiving each particular treatment receive it
 together, as for instance by all being taught in one way by one instructor,
 the only conclusion about any treatment difference observed is that it is
 attributable to the way of teaching or the instructor or partly due to each.
 (p. 123)

 In other words, an analysis that includes only two sources of variation,
 methods and students-within-methods (Model A), would correctly assess the
 inferential question pertaining to methods only in the unlikely circumstances
 in which (1) there are no teacher effects, and (2) each student's performance
 is independent or the particular set of students in his class.

 Model B

 If instead of using student scores as the observational unit, class means
 for the T teachers (t = 1, ..., 7) are employed, the model becomes

 Xtm = tq + am + /3tm,  (B)

 where t:m - NID (0, ao) (NID = normally distributed and independent).
 This is the model advocated by Lindquist (1940), Campbell and Stanley
 (1963), etc. for studies in which the treatment is group-oriented and hence

 8
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 can result in nonindependence among the students' scores. The E(MS) values
 for Model B along with the analysis of DeRosia data using Model B is found
 in panel b of Table I. Notice that the "highly significant" (p < .01) methods
 effect that was found when Model A (panel a) was used disappears (p >
 .20) when Model B is employed.

 But the analysis using the class mean as the observational unit (Model B)
 does not ensure that the important independence assumption has been met;
 to test the methods effect, Model B exchanges one independence assumption
 (among teachers) for another (among students). Model B is not the best
 response to the analysis problem; Models A and B ignore the important
 distinction between the experimental unit and the observational unit. As
 Addelman (1970) noted,

 The experimental unit is that entity that is allocated to a treatment 'inde-
 pendently' of other entities. It may contain several observational units. (p.
 1,095)

 Clearly the experimental unit could either be individual students or
 teachers (classes). Even if teachers are the experimental unit, students' scores
 may (and should) serve as the observational unit. The preferred model for
 the analysis (Model C) contains terms for all the available sources of
 variation in the experiment-in this example methods (M), teachers within
 methods (T:M), and students within teachers (S:TM). As Addelman (1970)
 observed,

 When there are several observational units per experimental unit, both the
 experimental unit error [ftm] and the observational unit error [Ei:tm] should
 be included in the model. Since both types of errors include variability due
 to factors unknown to or beyond the control of the experimenter, neither
 should be deleted from the model at the whim of the experimenter or
 statistician. (pp. 1,097-1,098)

 Model C

 Model C incorporates components both for teachers (or classes) and
 students; both are viewed as random effects because the desired inference
 is to teachers "like these" as well as to students "like these." The linear
 model for the design in which n students are nested within Tteachers which,
 in term, are nested within M methods is

 Xitm = L +- cm 4+ t.m + Ei:tm. (C)

 In Model C there are two sets of assumptions, i.e., Ei:tm NID (0, a,2) and
 lt:m - NID (0, a/3).

 In other words, since teachers are properly viewed as a random effect, a
 second "layer" of assumptions is required in the desired universe of
 inference. The second set of assumptions is rarely recognized or considered

 9
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 in practice. The assumptions of homogeneity of variance and normality for
 fStm and Ei:tm can be tested using the common statistical tests for these
 purposes, but are less important than the independence assumptions, espe-
 cially with balanced designs (Glass, Peckham & Sanders, 1972). The inde-
 pendence assumptions must often be evaluated logically. If scores from
 individual students are used as observational units and the data are analyzed
 using Model C (students are nested within teachers who are nested within
 methods), and if classes are appropriately designated as a random factor, the
 expected mean squares for the effects are given in panel c of Table I. The
 analysis of the sample data using Model C is given in the right-hand portion
 of panel c in Table I.

 It is apparent from Table I that for balanced designs, the F-ratio for the
 methods effect (with Model B or Model C) is the same whether class means
 or individual observations are used, since the methods mean square would be
 divided by the teachers within methods means square (T:M) in both in-
 stances. Even though the methods mean squares will differ (by a factor of n),
 the F-ratios for treatment will be identical in the two analyses given in Table
 I, and these F values will have identical degrees of freedom and critical F's.

 Independence Assumption. There has been much confusion regarding the
 assumption of independence in ANOVA designs. As in Model C, there is
 often more than one independence assumption to be considered in a given
 model. In Model A, the NID assumptions pertain to the student scores
 (within teacher and method). In Model B the NID assumptions pertain to
 class means (within method); in Model C the NID assumptions pertain to
 both class means (within method) and student scores (within teacher). If a
 model has a third random factor, the NID assumptions would also pertain
 to it. The critical independence question is the independence assumption per-
 taining to the effect being tested. The lack of independence among students
 within classes does not necessarily affect the independence among classes
 within treatment, and nonindependence among classes does not necessarily
 result in violation of the independence assumption among schools. Each
 independence assumption of the model must be evaluated separately. Thus,
 in the Lindquist example described earlier (in the McNemar [1940] quote),
 pupils are nested within teachers, who are nested within schools. The desired
 universe would require students, teachers, and schools to be random factors,

 and the levels within each would be assumed to be independent. Dependency
 among teachers (within schools) and/or among students (within teachers)
 does not necessarily result in a lack of independence among schools (which
 is all that would be required to test the method effect). For example, consider
 the analysis of a second dependent variable from DeRosia's study shown in
 Table II.

 Notice that the "conservative" analysis using class means (Model B) would
 yield a significant method effect (F = 40.8, p < .01), whereas the preferred

 10
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 TABLE II

 An Illustration of Data in which Class Means are not Independent

 SV v MS

 Methods (M) 1 106.0
 Teachers nested within method (T:M) 4 2.6
 Students within teachers and methods (S:TM) 144 21.0

 analysis (Model C) would not. Notice the mean square for the T:M effect
 is much smaller than the S:TM effect, yet Model C shows that the E(MS)
 for T:M includes the S:TM effect (see Table I). Why would the class means
 differ by less than would be expected "by chance"? (If a nondirectional F-
 test had been employed, F would have a value of 8.1 and the null hypothesis
 could have been rejected at a = .05.) Several explanations are possible; each
 illustrates a violation of the independence assumption for the f, values. The
 models assume that the teachers in each method are a random sample of
 teachers from the population who implement the method independently.
 Team-teaching, common planning, exchange of incidental materials, or
 activities could cause class means to differ by less than would be expected.
 Likewise, if in the assignment of students to classes within each method, a
 careful effort is made to keep the classes equivalent in intelligence, etc., the
 class means can be more nearly equal than would be expected from a
 random assignment of pupils to classes, and hence the mean square associ-
 ated with T:M could be less than for S: TM.

 Such dependency among class means does not necessarily affect the
 variance among pupils within classes, i.e., pupil scores can be independent
 even if class means are not, and vice-versa. The analysis using Model C (but
 not Model B) would have suggested that the independence assumption
 regarding the fi values is untenable and therefore, the generalizability of the
 method effect lacks credibility.

 Mixed-model Designs

 Just as in hierarchical designs, in balanced mixed-model ANOVA designs
 the F-ratio for the fixed effect is unchanged by the unit of analysis decision
 when the proper model is employed; this is illustrated in the methods-by-
 teachers design in Table III.

 An Example In an experimental study conducted to assess the effects of
 the use (E) vs. nonuse (C) of hand calculators in a remedial college
 mathematics course (Koop, 1978), thirty students in each of three instructors'
 classes were randomly assigned to the E or C group. If group means are
 employed as the unit of analysis (Model D in Table III), there are only six
 observations, whereas there would be 90 observations in the student-level

 11
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 TABLE III

 Expected Mean Squaresfor a Balanced ANO VA Design (and Illustrative Analyses) in which T
 Teachers Cross M Methods when Class Means (Panel A) and n Student Scores (Panel B) are

 used as the Observational Unit

 Example
 SV v E(MS)

 v MS F

 a) [Model D: Xtm = + + am + Pt + a ltm]

 Methods (M) .......... M- 1 atm + To 1 40.07 17.27
 Teachers (T) ........... T- 1 Ma 2 3.80 ...
 MT .......... . (M-1)(T-) 2 2.32

 b) [Model E: Xitm = 1 + am + Pt + ajltm + Ei:tm]

 Methods (M) ........... M- I 2tm + nt + nT 1 601.08 17.27
 Teachers (T) ...... . T- I atm + nMaot 2 57.00 1.43
 M T .................... (M - 1) (T 1) tm + 2 34.81 .87
 Students nested within

 teachers and methods

 (S:TM) ............... MT(n - ) tm 84 39.98

 analysis (Model E). The results of the analyses are given as the Example in
 panels a and b of Table III when group means (Model D) and student scores
 (Model E) are used as the unit of analysis, respectively.
 Note that if the proper ANOVA model is employed, the question of the

 proper unit of analysis is taken care of implicitly. When the proper ANOVA
 model is used, although the analyses are identical as far as the method effect
 is concerned, the analyses using individual students in Model E are preferred
 because the hypothesis concerning the method-by-teacher interaction can be
 evaluated. In addition, by retaining individual scores in the analysis, the
 researcher can consider incorporating personological variables into the de-
 sign so that interactions of these factors with treatment effects can be
 evaluated. These interactions speak directly to critical generalizability ques-
 tions.

 Models in which students are used as the observational unit (like Models
 C and E) have the advantage of allowing the researcher to empirically test
 the statistical model to see if it might be simplified, that is, the pooling option
 can be considered. Notice in Table III that in spite of the large F-ratio
 (17.27) for the method effect, the null hypothesis for the treatment effect
 cannot be rejected (at a = .05) because the error mean square has only two
 degrees of freedom, and hence the critical F is very large (.95F1,2 = 18.5). If
 Model E can be simplified by finding that a,2 = 0 is tenable when tested
 with good power, the null hypothesis for the method effect becomes less
 tenable.

 12
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 The hypothesis for the method-by-teacher interaction (a2 = 0) in Model
 E (and the teachers-within-method, Ho:a:m = 0, in Model C) will often be
 tested with good power since the error term (the variance among students-
 within-teacher-and-method, aUtm) will frequently have many degrees of
 freedom.

 If there is a lack of independence among pupils' scores, the variance for
 the teacher-by-method interaction in Model E will ordinarily be larger than
 the error mean square (a2tm), thereby nullifying the pooling option (see Glass
 & Stanley, 1970, pp. 501-507).

 In Table I with Model C, the model should not be simplified since the
 F-ratio for the T:M effect is large (4.19, p < .05). But in Table III with the
 example using Model E, the F-ratio for the MT interaction is less than 1.0,
 hence many researchers following Winer (1971), Kirk (1968), Myers (1979),
 or Green and Tukey (1960) would simplify the model. Given that Ho:ao =
 0 is tenable and tested with good power, the model can be simplified, and
 the ao component can be deleted in Model E and wherever it appears in the
 E(MS) expressions for the various effects. The pooled estimate ofaotm in the
 example in Model E is 39.86 and the F-ratio for the method effect would
 become 15.08 (p < .01).

 Note that the result of the analysis in Table III when pooling is employed
 is very similar to the result that would be obtained had individual observa-
 tions been used (and instructors been ignored or viewed as a fixed factor) in

 the analysis. But this is not the type of analysis frowned on by Lindquist;
 there is an important difference. What Lindquist criticized was, in effect, a
 priori pooling-blind pooling without any statistical safeguards. If indeed
 there is nonindependence among individuals, a priori pooling is inappro-
 priate and would greatly increase the probability of a Type I error.

 If the teacher factor is ignored in the analysis, as in Model A in Table I,
 the only sources of variation represented in the analysis are methods and
 students, and there is de facto pooling that greatly increases the probability
 of spurious significance since the degrees of freedom for the error mean
 square for the F-test for the method effect are much too large, hence the
 critical F is too small. The pooling strategy in Model C (Table I) would
 allow one to pool only when Ho:a.m = 0 has been shown empirically to be
 tenable. In Model E, pooling is legitimized only when Ho:ao = 0 is tenable.
 Of course, these hypotheses must be tested with good power-which suggests
 that perhaps a should often be relaxed to .20 or .25, especially if the degrees
 of freedom for the error term are not large. Pooling is usually less undesirable
 than making a Type II error. When several levels of random factors are
 included in the design, the pooling is less apt to be needed (Scheff6, 1959,
 pp. 126-127). The principal point of this paper, however, does not presuppose
 a pooling strategy, but illustrates that when the proper statistical model is
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 KENNETH D. HOPKINS

 specified with a balanced design, the choice of the observational unit
 employed will not affect the F-test for any common effects that are tested,
 and that the inclusions of student scores will yield more information and
 analysis options.

 An Illustration

 A study (Gehler, 1979) compared two methods of kindergarten instruction.
 Six kindergarten teachers were nested within each of two methods, but
 crossed the time-of-class (AM/PM) factor. Scores from 18 pupils per class
 are used in the analysis. Table IV gives results from the ANOVAs when
 class means (Model F, panel a) and when individual pupil scores (Model G,
 panel b) are used as the observational unit. Teachers and pupils are defined
 as random effects.

 Note that, although the two analyses (panels a and b in Table IV) yield
 different MS values for common sources of variation, that they yield identical
 F values for the three common hypotheses (M, A, and MA). The pupil level
 analysis (Model G) has the advantage of providing information on two other
 effects: (1) differences among teachers (within methods) and (2) the gener-
 alizability of any teacher difference across the time-of-day factor. In the
 example, the teacher-AM/PM interaction is tested and the AM/PM mean
 difference was found to generalize across teachers.

 TABLE IV

 Results of a Balanced ANOVA Design in which n Pupils are Nested Within T Teachers who are
 Nested within M Methods, but Cross the AM/PM Factor, when Class Means (Panel A) and

 Pupil Scores (Panel B) are Used as the Observational Unit

 SV v E(MS) MS F

 a) [Model F: Xatm = ju + am + ft:m + ya '+ ayam + yYatm]

 Methods (M) ...... 1 aI m + 12a, 104.8 .64
 Teachers (T:M) .... 10 tm 162.9 .
 AM/PM (A) ....... 1 a:tm + 12oa 96.3 10.02*
 MA .............. 1 tm + 6 m 13.8 1.43
 AT:M ............ 10 atm 9.61

 b) [Model G: Xiatm = - + am + Bt:m + ya + ay am + pyat:m + Ei:atm]

 Methods (M) ...... I p:atm + 18agm + 216am 1887 .64
 Teachers (T:M) .... 10 a2:atm + 18otm 2933 14.89**
 AM/PM (A) ....... 1 ap:atm + 18at.m + 216a2 1734 10.02*
 MA ............. 1 O2:atm + 18(atm + 108oam 248 1.43
 AT:M ............ 10 ap,tm + 18oatm 173 .88
 Pupils (P:A TM) .... 408 ap:tm 197

 *p< .05
 **p < .001

 14
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 If teachers were viewed as a fixed factor, a nongeneralizable but "highly
 significant" method difference would have been obtained F = 9.58,p < .001.
 The same result would have been obtained if a model which ignored the
 teacher factor had been employed: F= 1887/260 = 7.25, p < .001.

 The pooling option for testing the method effect in Model G is clearly
 contraindicated (F = 14.89 for the T:M effect). The pooling option for testing
 the AM/PM effect, however, is legitimized because the teacher-by-AM/PM
 interaction (AT:M) yielded an F-ratio of less than 1. However, pooling is
 unnecessary for the AM/PM effect, since in the orthodox analysis the power
 was sufficient to reveal a significant AM/PM effect.

 Observe in Table IV that no teacher-by-AM/PM interaction was evi-
 denced, but that there were significant differences among teachers within
 methods. Both of these findings are typical, illustrating the fact that the
 pooling option is much more likely to be possible with effects that cross a
 random factor (e.g., AM/PM) than for those under which the levels of the
 random factor are nested (e.g., methods).

 A Hierarchical Example

 The author was involved in a study in which two schools receiving
 experimental treatment were compared with two other control schools. All
 students who had remained in the same school for three years took a
 standardized achievement test at the end of their third year of formal
 schooling. Results of the study are presented in Table V. Three obvious
 choices for the observational unit are school means, teacher (class) means,
 and student scores. If schools were used as the observational unit (Model H)
 the study would yield only four observations-the four school means. Model
 I defines both schools and teachers as random variables; Model J adds pupils
 as a random variable consistent with the desire to generalize the findings to
 other schools, teachers, and students "like these." Table V gives the three
 analyses, where the observations unit is the schools (Model H), teachers
 (Model I), and students (Model J).

 The three F-ratios for the methods effect (and all other common effects)
 for the three models are identical. Notice, however, that the F-ratio for the

 schools-within-methods (S:M) effect is not significant (Models I and J);
 indeed, F < 1. Thus, Ho:a2m = 0 is tenable, and a2m can be deleted in the
 expected mean squares (if the model simplification strategy is employed).
 Therefore, in Models I and J, S:M and T:SM sources of variation can both
 be viewed as estimating the same parameter, and thus can be pooled to
 provide a more powerful test of the principal hypothesis, Ho:/E = -/c. The
 pooling procedure substantially reduces the critical F value (at a = .05) for
 treatments, from 18.5 to 4.96. But the null hypothesis is sustained even when
 the more powerful test with the pooled error term is employed. Can the
 model be further simplified to provide a more sensitive test? If Ho:tsm = 0
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 KENNETH D. HOPKINS

 TABLE V

 Expected Mean Squaresfor a Balanced ANO VA Design Involving n Pupils Nested within the T
 Teachers, Who are Nested within the S Schools, which are Nested within the M Methods Using

 Models A, B, and C

 SV E(MS) v MS F

 a) [Model H: Xsm = + + am + P.:m]

 Methods (M) ...... om + 2a0 1 .04 .06
 Schools (S:M) ..... am 2 .71

 b) [Model I: Xtsm = Il + am + fsm + yts:m]

 Methods (M) ...... sm + 3a2m + 6a2 1 .12 .06
 Schools (S:M) ..... a + 3a2 2 2.13 .46

 t2sm 8 4.64

 C) [Model J: Xgtsm = Jl + am + 13s:m + Yt.sm + 8g + alSgm + P6gs:m + y?Cgtsm + Ei.gtsm]

 M ................ atm + 242,sm + 7202m + 144a2 1 1.4 .06
 S:M .............. ap2ts + 24otsm + 72a!2m 2 25.5 .46
 T:SM ............. 2gtsm + 24at..m 8 55.7 8.19*
 Sex (G) ........... gtsm + 12ot:sm + 18gs:m + 144a0 1 72.2 4.29
 MG .............. o2tsm + 120atsm + 18as:m + 72a, 1 5.1 .30
 GS:M ........ tsm + 122t:s + 18a0:m 2 16.8 .62
 GT:SM ... .... . 2gtsm + 12agt:sm 8 27.1 3.99*
 Pupils: GTSM ..... a:gtsm 120 6.8

 Note. The author wishes to express gratitude to Carol Vojir for performing these analyses.
 *p< .05.

 is tenable, then this term could also be dropped from the model and the
 three sources, S:M, T:SM, and p:GTSM could be pooled to form an error
 term which would then have 129 degrees of freedom, and the critical value
 of F would drop to 3.92. But in Model J, the one model in which this effect

 can be tested, teacher differences within schools are highly significant (F=
 8.19, p < .001); thus, the second stage pooling is contraindicated.

 What then has been gained in this study by using individual scores rather
 than group means as the observational unit? First, in comparing Models J
 with H and I one can be more confident that a Type-II error has not been
 made regarding the method effect since the null hypothesis continued to be
 tenable even with a much more powerful test following pooling in Models
 I and J. Indeed, even when the study is viewed with restricted generalizability
 to see if the treatment effects are significant, even for these schools and these
 teachers, i.e., when schools and teachers are viewed as fixed factors, the
 treatment conclusion is not altered. In this inferentially impoverished fixed-
 effects model context, where the variance within (pa:gtsm) is the denominator
 for all F tests, the treatment F ratio is only .21. Thus, our confidence that a
 Type-II error of consequence has not been made is strengthened.

 In addition, the student-level analysis (Model J) yields information on
 several additional sources of variation.
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 UNIT OF ANALYSIS

 SUMMARY

 This paper has shown that the common recommendation to use group
 means where there may be nonindependence among observational units is
 unnecessary, unduly restrictive, impoverishes the analysis, limits the ques-
 tions that can be addressed in a study, and does not insure that the relevant
 independence assumption has been met. When random factors are properly
 identified and included in the analysis, the results for all common effects (Fs
 and critical Fs) are identical in balanced ANOVA designs, regardless of the
 observational unit employed. The use of individual observations, however,
 also allows other interesting questions pertaining to interaction and gener-
 alizability to be explored. In addition, if students are used as the observa-
 tional unit, the pooling option can be explored. The question of the proper
 observational unit (or unit of analysis) is answered directly, correctly, and
 implicitly when the proper statistical model is employed.
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